วันศุกร์ที่ 6 กันยายน พ.ศ. 2556


เซต
เซต (อังกฤษ: set) ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้
นิยาม
"เซต" เซตหนึ่ง เราหมายถึงการสะสมรวบรวมใดๆ ที่ให้ชื่อว่า M เข้าเป็นหน่วยเดียวกันทั้งหมด ของวัตถุที่ให้ชื่อว่า m ที่แตกต่างกัน (ซึ่งเรียกว่า "สมาชิก" ของ M) ตามความเข้าใจของเรา หรือตามความคิดของเรา      
ดังนั้นสมาชิกของเซตเซตหนึ่งจึงสามารถเป็นอะไรก็ได้ เช่น ตัวเลข ผู้คน ตัวอักษร หรือเป็นเซตของเซตอื่น เป็นต้น เซตนิยมเขียนแทนด้วยอักษรตัวใหญ่ เช่น A, B, C ฯลฯ ตามธรรมเนียมปฏิบัติ ในประโยคที่ว่า เซต A และ B เท่ากัน หมายความว่า ทั้งเซต A และเซต B มีสมาชิกทั้งหมดเหมือนกัน (ตัวอย่างเช่น สมาชิกทุกตัวที่อยู่ในเซต A ก็ต้องเป็นสมาชิกของเซต B ด้วย เขียนแทนด้วย A = B และในทางกลับกันก็เป็นเช่นเดียวกัน เขียนแทนด้วย B = A)
สมาชิกทุกตัวของเซตเซตหนึ่งต้องไม่ซ้ำกัน และจะไม่มีสมาชิกสองตัวใดในเซตเดียวกันที่เหมือนกันทุกประการ ซึ่งไม่เหมือนกับมัลทิเซต (multiset) ที่อาจมีสมาชิกซ้ำกันก็ได้ การดำเนินการของเซตทั้งหมดยังรักษาคุณสมบัติที่ว่าสมาชิกแต่ละตัวของเซตต้องไม่ซ้ำกัน ส่วนการเรียงลำดับของสมาชิกของเซตนั้นไม่มีความสำคัญ ซึ่งต่างจากลำดับอนุกรมหรือคู่อันดับ
การดำเนินการของเซต
1.         ยูเนียน ของ A และ B คือเซตที่เกิดจากการรวบรวมสมาชิกของ A และ B เข้าไว้ด้วยกัน
2.         อินเตอร์เซกชัน ของ A และ B คือเซตที่ประกอบด้วยสมาชิกที่เหมือนกันของ A และ B
3.         ผลต่าง A – B คือเซตที่ประกอบด้วยสมาชิกของ A ที่ไม่ใช่สมาชิกของ B
4.         คอมพลีเมนต์ ของ A เขียนแทนด้วย A’ คือสับเซตของ U ที่ประกอบด้วยสมาชิกที่ไม่อยู่ ใน A
ที่มา:http://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%8B%E0%B8%95_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)             05/09/2556
ภาคตัดกรวย

ภาคตัดกรวย (conic section หรือ conic) ในทางคณิตศาสตร์ หมายถึง เส้นโค้งที่ได้จากการตัดพื้นผิวกรวยกลม ด้วยระนาบแบน ภาคตัดกรวยนี้ถูกตั้งเป็นหัวข้อศึกษาตั้งแต่สมัย 200 ปีก่อนคริสต์ศักราชโดย อพอลโลเนียส แห่ง เพอร์กา ผู้ซึ่งศึกษาภาคตัดกรวยและค้นพบสมบัติหลายประการของภาคตัดกรวย ต่อมากรณีการศึกษาภาคตัดกรวยถูกนำไปใช้ประโยชน์หลายแบบ ได้แก่ ในปี พ.ศ. 2133 (ค.ศ. 1590) กาลิเลโอ กาลิเลอี พบว่าขีปนาวุธที่ยิงขึ้นไปในมุมที่กำหนดมีวิถีการเคลื่อนที่โค้งแบบพาราโบลา, ใน พ.ศ. 2152 (ค.ศ. 1609) โยฮันส์ เคปเลอร์ พบว่าวงโคจรของดาวเคราะห์รอบนอกเป็นรูปวงรี เป็นต้น

ชนิดของภาคตัดกรวย
วงกลม และ วงรี คือ เส้นโค้งซึ่งได้จากการตัดกรวย ด้วยระนาบ ให้ได้เส้นโค้งปิด (เป็นวง) วงกลมนั้นถือเป็นกรณีพิเศษของวงรี โดยแนวของระนาบในการตัดนั้น ตั้งฉากกับแกนกลางของกรวย หากระนาบตัดกรวยในแนวขนานกับเส้นขอบของกรวย หรือเรียก เส้นกำเนิดกรวย (generator line) จะได้เส้นโค้งเรียกว่า พาราโบลา หากระนาบไม่อยู่ในแนวขนานเส้นขอบ และตัดกรวยได้เส้นโค้งเปิดไม่เป็นวง จะเรียกเส้นโค้งนี้ว่า ไฮเพอร์โบลา จะเห็นได้ว่าในกรณีนี้ระนาบจะตัดกรวยทั้งครึ่งบน และครึ่งล่าง ได้เป็นเส้นโค้งที่ขาดจากกันสองเส้น
ในกรณีที่เรียกว่า "ภาคตัดกรวยลดรูป" (degenerate conic) ระนาบจะตัดผ่านจุดยอดของกรวย และได้ผลของการตัดเป็น จุด เส้นตรง หรือ เส้นตรงสองเส้นตัดกัน กรณีเหล่านี้ไม่ได้ถูกรวมไว้ในภาคตัดกรวย

ภาคตัดกรวยจากทางเดินของจุด

          แต่ละประเภทของภาคตัดกรวยนั้น สามารถนิยามโดยการใช้เส้นทางเดินของจุด โดยทุก ๆ จุด P บนเส้นทางเดิน จะต้องเป็นไปตามคุณสมบัติเฉพาะดังนี้
·         วงกลม : ระยะ(P,C) = r โดยที่ Cคือจุดตายตัวเรียกว่า จุดศูนย์กลาง และ r คือค่าคงที่ เรียกว่า รัศมี
·         พาราโบลา : ระยะ(P,F) = ระยะ(P,L) โดยที่ F คือจุดตายตัว เรียกว่า จุดโฟกัส และ L คือ เส้นตรง กำหนดตายตัว และไม่ผ่านจุดโฟกัส เรียกว่า ไดเรกทริกซ์
·         วงรี : ระยะ(P,A) + ระยะ(P,B) = d โดยที่ A, B เป็นจุดตายตัวสองจุดที่แตกต่างกัน เรียกว่า จุดโฟกัส และ d เป็นค่าคงที่ ที่มีค่ามากกว่า ระยะ(A,B) เรียกว่า เส้นผ่านศูนย์กลางหลัก
·         ไฮเพอร์โบลา : ระยะ(P,A) - ระยะ(P,B) = d โดยที่ A, B เป็นจุดตายตัวสองจุดที่แตกต่างกัน เรียกว่า จุดโฟกัส และ d เป็นค่าคงที่ ที่มีค่าน้อยกว่า ระยะ(A,B)


30 สิงหาคม 2556

วันพฤหัสบดีที่ 5 กันยายน พ.ศ. 2556



สูตรการหาพื้นที่ของรูปสองมิติต่างๆ

สูตรมาตรฐานของสามเหลี่ยม
สามเหลี่ยม = เศษหนึ่งส่วนสอง คูณ สูง คูณฐาน
สูตรต่างๆของการหาพื้นที่รูปสี่เหลี่ยม
ความยาวรอบรูปของรูปสี่เหลี่ยมใดใด=ผลบวกของด้านทุกด้าน
สี่เหลี่ยมผืนผ้า = (กว้าง คูณ ยาว)
สี่เหลี่ยมจัตุรัส = (ด้าน คูณ ด้าน)
สี่เหลี่ยมด้านขนาน = (สูง คูณ ฐาน)
สี่เหลี่ยมคางหมู = (เศษหนึ่งส่วนสอง คูณ ผลบวกด้านคู่ขนาน คูณ สูง)
สี่เหลี่ยมขนมเปียกปูน = (เศษหนึ่งส่วนสอง คูณ ผลคูณของเส้นทแยงมุม)
สี่เหลี่ยมใดใด = (เศษหนึ่งส่วนสอง คูณ เส้นทแยงมุม คูณ ผลบวกของเส้นกิ่ง)
สี่เหลี่ยมรูปว่าว = (เศษหนึ่งส่วนสอง คูณ ผลคูณของ)


         30/08/2556


จำนวนจริง (Real Number)
ระบบจำนวนเลขเท่าที่มนุษย์คิดค้นพบในขณะนี้ประกอบด้วยเลขจำนวน 2 ระบบ คือ
     1. ระบบจำนวนจริง (Real Number System)
     2. ระบบจำนวนเชิงซ้อนประเภทจินตภาพ (Imaginary Number System)
จำนวนตรรกยะ (Rational Number) คือ จำนวนที่สามารถเขียนในรูปเศษส่วน a/b เมื่อ a และ  b  เป็นจำนวนเต็มโดยที่ b ¹ 0  จำนวนตรรกยะ จำแนกได้เป็น 3 ประเภทใหญ่ ๆ คือ
     1. จำนวนเต็ม (Integer)
     2. เศษส่วน (Fraction)
     3. ทศนิยม (Repeating decimal)
จำนวนอตรรกยะ (irrational Number) คือ จำนวนที่ไม่สามารถเขียนในรูปเศษส่วน a/b เมื่อ a และ  b  เป็นจำนวนเต็มโดยที่ b ¹ 0   หรือจำนวนอตรรกยะคือ  จำนวนที่ไม่ใช่จำนวนตรรกยะนั่นเอง จำนวนอตรรกยะ จำแนกได้เป็น 2 ประเภทใหญ่ใหญ่คือ
     1. จำนวนติดกรณ์บางจำนวน  เช่น   เป็นต้น
     2. จำนวนทศนิยมไม่ซ้ำเช่น 5.18118168473465
          หมายเหตุ p ซึ่งประมาณได้ด้วย 22/7 แต่จริงๆ แล้ว p เป็นเลขอตรรกยะ
         *** สิ่งที่ควรทราบ***
  จำนวนจริงทุกจำนวนสามารถแทนได้ด้วยจุดบนเส้นจำนวน
รากที่สอง(Square root )
     นิยาม  กำหนดให้ a แทนจำนวนจริงบวกใด ๆ หรือ  ศูนย์ รากที่สองของ a คือ จำนวนจริงที่ยกกำลังสองแล้วได้ a
          1. ถ้า a เป็นจำนวนจริงบวก รากที่สองของ a มี 2 ราก  คือ 
          2. ถ้า a = 0 รากที่สองของ a คือ 0
คุณสมบัติของจำนวนเต็ม
     1. จำนวนนับ  (counting number) คือ จำนวนที่เราใช้นับสิ่งของต่าง ๆ เริ่มตั้งแต่ 1, 2 , 3 , … หรือเรียกอีกอย่างหนึ่งว่า จำนวนธรรมชาติ (natural  number) จำนวนนับจำแนกได้ 2 กลุ่มคือ จำนวนคู่ กับจำนวนคี่
          1.1 จำนวนคู่ (odd number) คือ จำนวนนับที่มี 2 เป็นตัวประกอบ (หาร 2 ลงตัว) เช่น 2, 4 , 6 , 8 ,…. เป็นต้น
          1.2 จำนวนคี่ (even number) คือ จำนวนนับอื่นที่ไม่ใช่จำนวนคู่(หาร  2 ไม่ลงตัว) เช่น 1 ,3 , 5 , 7เป็นต้น
     2. ตัวประกอบ (factor) คือ จำนวนนับที่หารจำนวนนับนั้นได้ลงตัว
          เช่น  2  เป็นตัวประกอบของ  4  เพราะ 2 หาร 4 ได้ลงตัว
                 5  เป็นตัวประกอบของ  15 เพราะ 5 หาร  15 ได้ลงตัว
     3. จำนวนเฉพาะ (prime number) คือ จำนวนนับที่มากกว่า 1 และมีตัวประกอบเพียง 2 ตัวคือ 1 และตัวมันเอง เช่น 2, 3 , 5 , 7 , 11 ,…
         05/09/2556

ฟังก์ชันเอกซ์โพเนนเชียล (Exponential Function)
        จากการศึกษาในเรื่องเลขยกกำลัง  ซึ่งท้ายที่สุดเราได้สนใจเลขยกกำลังที่มีฐานเป็นจำนวนจริงบวก  และเลขชี้กำลังเป็นจำนวนจริงใด ๆ
            แต่ได้มีนักคณิตศาสตร์ได้สังเกตเห็นว่า  ถ้าเลขยกกำลังมีฐานเป็น 1  และเลขชี้กำลังเป็นจำนวนจริงใด ๆ ดังนี้
            ถ้ากำหนดให้      a = 1  และ x เป็นจำนวนจริงใดแล้วจะได้
                                                ax    =    1x     =   1
ข้อสังเกต
ไม่ว่า x จะเป็นจำนวนจริงใด ๆ ก็ตาม 1x ก็ยังคงเท่ากับ 1 เสมอ  ดังนั้นจึงไม่น่าสนใจ  เนื่องจาก  เราทราบว่ามันเป็นอะไรแน่ ๆ อยู่แล้ว
เรายังไม่ทราบนะว่า  เลขยกกำลังที่มีฐานเป็นจำนวนจริงบวกยกเว้น 1  และเลขชี้กำลังเป็นจำนวนจริงใด ๆ แสดงว่าเราจะต้องสนใจศึกษาเลขยกกำลังลักษณะนี้เป็นพิเศษ  ซึ่งจะกล่าวถึงใน  เรื่องฟังก์ชันเอกซ์โพเนนเชียลดังนี้
ข้อกำหนด  (ฟังก์ชันเอกซ์โพเนนเชียล)
ฟังก์ชันเอกซ์โพเนนเชียล คือ f = { (x, y) Î R ´ R+ / y = ax , a > 0, a ¹ 1 }
ข้อตกลง  ในหนังสือคณิตศาสตร์บางเล่มให้ข้อกำหนดของฟังก์ชันเอกซ์โพเนนเชียล  เป็นฟังก์ชันที่อยู่ในรูป f(x) = kax  เมื่อ k เป็นค่าคงตัวที่ไม่ใช่ 0 และ a เป็นจำนวนจริงบวกที่ไม่เป็น 1 แต่ในหลักสูตรมัธยมศึกษาตอนปลายนี้  จะถือว่าฟังก์ชันเอกซ์โพเนนเชียลจะอยู่ในรูป f(x) = ax  เมื่อ a เป็น จำนวนจริงบวกที่ไม่เป็น 1 เท่านั้น
ข้อสังเกต  จากข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล
•f(x) = 1x เป็นฟังก์ชันคงตัวเนื่องจาก 1x = 1  ดังนั้นในข้อกำหนดฟังก์ชันเอกซ์โพเนนเชียล  จึงไม่สนใจ  ฐาน (a) ที่เป็น 1
•f(x) = 1x  ไม่เป็นฟังก์ชันเอ็กซ์โพเนนเชียล  เนื่องจาก  f(x) = 1x เป็นฟังก์ชันคงตัว
จากเงื่อนไขที่ว่า  y = ax, a > 0, a ¹ 1  ทำให้เราทราบได้เลยว่าฐาน (a) มีอยู่ 2 ลักษณะ คือ  0 < a < 1 กับ a > 1
ฟังก์ชันเอกซ์โพเนนเชียลจะมีอยู่ 2 ชนิด  โดยขึ้นอยู่กับลักษณะของฐาน (a)  ดังนี้
ชนิดที่ 1     y = ax, 0 < a < 1
ชนิดที่ 2     y = ax, a > 1